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Abstract
We consider a strongly correlated t, t ′–J spin model with a positive uniaxial
anisotropy. We show that in 2 + 1 dimensions this model is equivalent to spinon
and holon excitations coupled to a Z2 Ising gauge field. The Z2 gauge field
represents the vortex monopole excitations of the X–Y model. As a function of
the hole concentration the X–Y model has two phases: a spin wave phase and a
free vortex monopole phase. In the spin wave phase the spinons and the holons
are weakly interacting, giving rise to a spin–charge separated phase which at
zero temperature is superconducting. When the hole concentration increases the
Z2 excitations (the monopole currents) become free,giving rise to holon–spinon
binding. The destruction of superconductivity at zero temperature coincides
with the appearance of the free monopole currents.

1. Introduction

One of the fundamental questions in the high Tc cuprate superconductors is the possibility
of spin–charge separation in 2 + 1 dimensions. Following Anderson [1], the high Tc

superconductors have been described within the t–J model. The t–J model has been shown
to be equivalent to a liquid of charged holes coupled to spin excitations.

Anderson has argued that the new excitations of the system are the charged holons (the
fermionic holes) and neutral spinons (the disordered spin liquid) which interact through a
U(1) gauge field [2, 3]. The recent angle-resolved photoemission spectroscopy [13] and
optical conductivity [14] support Anderson’s picture. This picture points towards a spin–
charge separation model, a model which is well supported experimentally. Theoretically the
picture of charge and spin separation is equivalent to deconfinement. The regular electron
represents the confinement phase of holons and spinons mediated by the U(1) gauge field.
According to Fradkin and Shenker [4] the U(1) gauge theory in 2 + 1 dimensions is always in
the confined phase [5]. On the other hand, if the U(1) gauge field is replaced by a Z2 Ising
gauge field the model has a deconfined phase. This idea has been exploited by Senthil and

0953-8984/04/437753+10$30.00 © 2004 IOP Publishing Ltd Printed in the UK 7753

http://stacks.iop.org/JPhysCM/16/7753


7754 D Schmeltzer and A R Bishop

Fisher [6] who have argued that the t–J model is equivalent to holons and spinons interacting
with a Z2 gauge field and therefore they concluded that spin–charge separation occurs. The
argument presented by Senthil and Fisher [6] has been criticized by Hastings [7] who has
shown that the Z2 symmetry is a result of an approximation. When the exact effective action
is constructed one recovers the full U(1) gauge symmetry. Therefore we have only a confined
phase and no spin–charge separation!

In order to allow for a deconfined phase we propose to modify the model by introducing
a positive uniaxial magnetic anisotropy. Such a term originates from the lattice crystal field
effects. (The presence of the uniaxial anisotropy term replaces the Heisenberg model by an
X–Y model [8] and the presence of magnetic frustration [9–11] gives rise to a non-magnetic
ground state.)

The purpose of this paper is to present a theoretical formulation which is consistent with the
experimental observation where for the underdoped case a spin–charge separated state appears.
The magnetic order is destroyed and the ground state at zero temperature is superconducting.
At finite temperatures, one obtains a spin–charge separated metal termed as non-Fermi liquid.
At large doping, superconductivity is suppressed and a regular metal emerges.

Formally, we achieve this by adding a uniaxial term to the Hamiltonian which breaks
the SU(2) symmetry. The ‘uniaxial’ term is given by 1

2 D
∑

�r n2
s (�r), D > 0, and ns(�r) =

n↑(�r) − n↓(�r). As a result the Schwinger boson representation for the spin is replaced by a
U(1) spinon representation.

When the system is doped the (Ising) magnetic order ns(�r) vanishes. The hole doping
is described by the spinless fermion density ψ+(�r)ψ(�r ). In the presence of holes the
magnetic order, ns(�r) = C+

↑(�r)C↑(�r) − C+
↓(�r)C↓(�r), gives rise to a constraint at each site,

ns(�r) = ±(1 − ψ+(�r)ψ(�r )). (The meaning of this constraint is that in the absence of holes
the magnetization ns(�r) in the z direction takes values ±1; when the hole density is unity the
magnetization vanishes.) At finite doping δ > δc the Ising magnetic order vanishes. For this
condition the spin excitations are described by neutral spinons characterized by the bosonic
phase. The major consequence of this representation is that the fermionic holons (the holes
with no spin) interact with the bosonic spinons. This interaction is given by a real order hopping
term which replaces the U(1) gauge field; see equations (6a) and (6b) in the paper. It is this real
hopping term which is the source of the Z2 symmetry. The spinon bosonic phase excitations are
controlled by the X–Y Hamiltonian which replaces the Heisenberg model (the Berry phase of
the modified Heisenberg model in 2+1 dimensions vanishes). The X–Y model has an effective
coupling constant γeff . This coupling constant is the effective X–Y exchange coupling constant
which decreases with the increase of the hole concentration δ. In this regime the Z2 excitations
represent the vortex monopole currents of the X–Y model in 2+1 dimensions. The X–Y model
in 2 + 1 dimensions has a phase transition at a coupling constant γeff = γ ∗, where γ ∗ ≡ γ (δ∗)
and δ∗ is the quantum critical hole concentration (δc < δ∗). For γeff > γ ∗ the X–Y model is
in the spin wave phase with no monopole currents. In this region the spinons and the holons
are weakly interacting, giving rise to spin–charge separation. At zero temperature the ground
state is superconducting. This phase occurs at low hole concentrations, δc < δ < δ

∗. At large
hole concentrations, δ∗ < δ, the coupling constant obeys γeff < γ

∗. As a result the monopole
currents are free, spin and charge confinement takes place and superconductivity is destroyed
at zero temperature. We identify the critical value γ ∗ = γ (δ∗) with the quantum critical point.

The plan of this paper is as follows: section 2 is devoted to the presentation of the model;
in sections 3 and 4 we solve the constraint problem and find the action for the fermionic charges
(holons) and bosonic spin degrees of freedom (spinons in the spin-wave phase or monopole
currents); in section 5 we construct the Euclidean action and obtain a bosonic Berry phase for
the spinon (which is different from the Heisenberg Berry phase); section 6 is restricted to the
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situation where the uniaxial term gives rise to a non-magnetic ground state; in section 7 we
consider the phase transition of the X–Y model in 2 + 1 dimensions as a function of the hole
concentrations and show that the spin–charge separated phase occurs in the spinon–spin wave
phase (the phase with no monopole currents) and in section 8 we present our conclusions.

2. The model

We consider the t–t ′–J model with uniaxial anisotropy.

H = −t
∑

�r,i=1,2

∑
σ=↑,↓

C+
σ (�r)Cσ (�r + ai) + H.c.− t ′ ∑

�r,±

∑
σ=↑,↓

C+
σ (�r)Cσ (�r + a1 ± a2) + H.c.

+ J
∑

�r ,i=1,2

[�S(�r) · �S(�r + ai)− 1
4 n(�r)n(�r + ai)] +

D

2

∑
�r

n2
s (�r), (1)

where ns(�r) = C+
↑(�r)C↑(�r)−C+

↓(�r)C↓(�r) is the magnetization, D > 0 represents the uniaxial
anisotropy, t and t ′ are the nearest and next nearest neighbour hopping and J is the Heisenberg
exchange coupling. In equation (1), �S(r) is the spin-1/2 density, and n(�r) is the charge density.
As D → 0, t → 0, t ′ → 0 and δ → 0 (no doping) the model in equation (1) describes a
Heisenberg antiferromagnet. When the uniaxial field is large, D � 0, the Heisenberg model is
replaced by an X–Y model in 2+1 dimensions. The excitations of the X–Y model (spinons–spin
waves and monopole currents) play a crucial role in our investigation.

3. The bosonic ‘density-phase’ representation of the spin excitations

We will show that the spin degrees of freedom can be represented in terms of the bosonic
‘density-phase’ representations.

We will show that the fermionic holon excitations interact with the bosonic phase of the
spinon excitations. Our starting point is the slave boson representation:

C+
σ = b+

σ (�r)ψ̃(�r), Cσ (�r) = ψ̃+
σ bσ (�r) (2)

with the constraint

ψ̃+(�r)ψ̃(�r) + b+
↑(�r)b↑(�r) + b+

↓(�r)b↓(�r) = 1, (3)

where ψ̃+, ψ̃ are spinless fermions which create and destroy a holon. b+
σ , bσ , σ = ↑,↓ are

the Schwinger bosonic representation for the spin operators. We will show that when the
magnetization is suppressed the SU(2) Schwinger representation is replaced by a U(1) spinon
representation.

We will show this using the (radial) ‘particle-phase’ representation:

b+
σ (�r) =

√
nσ (�r)e−iθσ (�r) =

√
n(�r) + σ̂ns(�r)

2
e−iθ(�r)e−iσ̂ θ̃s (�r)

bσ (�r) = eiθσ (�r)√nσ (�r) = eiθ(�r)eiσ̂ θ̃s (�r)
√

n(�r) + σ̂ns(�r)
2

.

(4)

In equation (4) we use the convention σ̂ (σ = ↑) = 1 and σ̂ (σ = ↓) = −1.
In equation (2) we have the commutation relations [nσ (�r), θσ ′(�r)] = iδσ,σ ′ . The bosonic

pairs nσ (�r), eiσθσ (�r) are replaced in terms of the ‘density’ and ‘spinon’ bosons, nσ (�r) =
1
2 (n(�r) + σ̂ns(�r)), θσ (�r) = θ(�r) + σ̂ θ̃s(�r), with the commutation relations [n(�r), θ(�r)] = i ,
[ns(�r), θs(�r)] = i . We replace, in bσ (�r), b+

σ (�r) the density n(�r) by the average density
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n̄ ≡ 〈n(�r )〉 = 1−〈ψ+ψ〉 ≈ 1− δ. As a result the bosonic fields are replaced by eiθ̃s(�r), e−iθ̃s (�r),

b+
↑(�r)eiθ(�r) ≈ 1√

2

[√
n̄(�r)e−iθ̃s (�r) +

ns(�r)
2
√

n̄(�r)e−iθ̃s (�r)
]

b+
↓(�r)eiθ(�r) ≈ 1√

2

[√
n̄(�r)eiθ̃s (�r) − ns(�r)

2
√

n̄(�r)eiθ̃s(�r)
] (4a)

and

e−iθ(�r)b↑(�r) ≈ 1√
2

[
eiθ̃s(�r)√n̄(�r) + eiθ̃s (�r) ns(�r)

2
√

n̄(�r)
]

e−iθ(�r)b↓(�r) ≈ 1√
2

[
e−iθ̃s(�r)√n̄(�r)− e−iθ̃s (�r) ns(�r)

2
√

n̄

]
.

(4b)

The set of equations (4a), (4b) has the property that in the limit ns(�r)/n(�r)  1 the
SU(2) bosonic fields bσ (�r) and b+

σ (�r) can be replaced by the U(1) spinon, e±iθ̃s(�r). The
spinon field is related to the SU(2) fields, b+

↓(�r)eiθ(�r) = b↓(r)e−iθ(�r) ≈ √
n̄(r)e−iθ̃s (�r);

b+
↓(�r)e+iθ(�r) = b↓(�r)e−iθ(�r) ≈ √

n̄(r)e−iθ̃s (�r).
Next we absorb the phase θ(r) into the fermion fields:

ψ(�r ) = e−iθ(�r)ψ̃(�r)
ψ+(�r) = ψ̃+(�r)eiθ(�r).

(5a)

The constraint in terms of the new fields is

ns(�r) = σ(�r)(1 − ψ+(�r)ψ(�r)). (5b)

where σ(�r) = ±1.
Equations (4a)–(5b) allow us to express the Hamiltonian given in equation (1) in terms of

the spinon and holon fields: θs(�r), ns(�r) and ψ(�r ), ψ+(�r).

4. The Hamiltonian in the new representation—fermion holons interacting with the
bosonic spinon

The Hamiltonian takes the form

H =
∑
(�r)

h(�r),
h(�r ) = ht (�r) + ht ′(�r) + hµ(�r) + hc(�r) + hm(�r) + δht(�r) + δht ′(�r).

(6)

Here ht (�r) is the nearest-neighbour hopping term,

ht (�r) = −t̃
∑
(�r)
ψ+(�r + ai)[cos(θs(�r)− θs(�r + ai))]ψ(�r) + H.c. (6a)

ht ′ is the next-nearest-neighbour hopping.

ht ′(�r) = −t̃ ′/2
∑
t,−
ψ+(�r + ai + pa2)[cos(θs(�r)− θs(�r + ai + pa2))]ψ(�r) + H.c. (6b)

where t̃ ≡ t n̄ � t (1 − δ), t̃ ′ � t ′(1 − δ) and δ ≡ 〈ψ+(�r)ψ(�r)〉.
The Heisenberg Hamiltonian hm takes the form

hm(�r) = J (1 − 2δ)

(
n̄

2

)2 ∑
i=1,2

(
1 −

(
ns(�r)

n̄

)2)1/2(
1 −

(
ns(�r + ai)

n̄

)2)1/2

× cos[2(θs(�r)− θs(�r + ai))] +
J

4
(1 − 2δ)

∑
i=1,2

ns(�r)rs(�r + ai ). (6c)
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The first part of equation (6c) represent the X–Y interaction and the second term ns(�r)ns(�r +ai)

is the Ising term. hc is the ‘effective’ uniaxial term,

hc(�r) = D

2
n2

s (�r), D > 0. (6d)

The uniaxial parameter is normalized by the fluctuations induced by the doping. As a result
D is replaced by DR > D > 0. In particular we mention that, due to doping, one expects that
even in the limit D → 0, DR will be finite, causing the destruction of the magnetic order.

hµ is the charge part. It contains the attractive charge–charge interaction (the term
proportional to − J

4 n(�r)n(�r + ai) in equation (1) and a shift of the chemical potential):

hµ(�r) =
(

−µ +
3

4
J

)
ψ+(�r)ψ(�r )− J

4

∑
i=1,2

ψ+(�r)ψ+(�r + ai)ψ(�r + ai)ψ(�r), (6e)

µ is the chemical potential chosen such that 〈ψ+(�r)ψ(�r )〉 = δ. δht and δht ′ are irrelevant
terms in the renormalization group sense and will be ignored.

5. The Euclidean action of the model—fermionic holons and bosonic spinons

In the second step we perform a Legendre transform and replace the Hamiltonian in equation (6)
by the action S. The transform is implemented by using the fact that ψ+(�r) is the canonical
momentum conjugate toψ(�r , τ ) and ns(�r , τ ) is the canonical momentum conjugate to θs(�r, τ )
(τ is the Euclidean time, τ = it). The action has to be supplemented with the constraints,
ns(�r) = σ(�r )(1−ψ+(�r)ψ(�r ))where ns(r) is an integer restricted by the Ising field,σ(�r) = ±1.

We will show that our action is equivalent to fermionic holons coupled to bosonic spinons.
We will show this by deriving the Berry phase of the two excitations.

We do this by constructing the partition function:

Z = Tr

[
Pσ Pns Tτ exp

(
−

∫ β

o
dτ H (τ )

)]
= Tr Tτ

β∏
τn=ar β/N

[Pσ (τn)Pns (τn) exp[−εH (τn)]],

(7a)

where Pσ (τn) and Pns (τn) are given by

Pσ (τn) =
∏

�r

∫
dλ (�r, τn)

2π
exp{iλ(�r , τn)[ns(�r , τn)− σ(�r , τn)(1 − ψ+(�r , τn)ψ(�r , τn))]} (7b)

and

Pns (τn) =
∏
�r ,τn

ei2πns (�r,τn)mo(�r,τn), (7c)

where −∞ � mo � ∞ are integers.
Equation (7a) is evaluated using the ‘bosonic’ coherent states |θs(�r , τ )〉 and the ‘Grassman’

coherent states |−ψ̄(r, τ )〉, |ψ(�r , τ )〉. Using these coherent states we compute the trace in
equation (7a):

Tr [ ] ≡
∑
σ=±1

∞∑
mo=−∞

∫ ∫
〈−ψ̄, θs |[ ]|θs, ψ〉e−ψ̄ψ dψ̄ dψ dθs dns . (7d)

We sum over σ = ±1 and find the partition function Z :

Z =
∫

e−s dψ̄ dψ dθs dns dλ. (7e)
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The action in equations (7e) and (8) has two parts: the Berry phase, the Hamiltonian and
the coupling between holons and spinons generated by the field λ.

S =
∑

�r

∑
τ

{ψ̄(�r , τ )∂̂τψ(r, τ ) − ins(�r , τ )∂̂τ θ(�r , τ )

− iλ(�r , τ )ns(�r , τ )− log |cos(λ(�r , τ )(1 − ψ+(�r , τ )ψ(�r , τ )))| + aoh(�r , τ )}.
(8)

In equation (8), the first term is the fermionic Berry phase for the holons and the second
term is the bosonic Berry phase for the spinons.

Additional parameters in the action are the following: ao = β/N is the ‘temporal’ lattice
constant, ∂̂ is the lattice derivative; ∂̂τ f ≡ f (τ + ai) − f (τ ); (∂̂τ f is related to the regular
time derivative ∂τ ≡ ∂̂τ /ao).

In equation (7e) we perform the trace overσ = ±1. As a result the term iλns in equation (8)
is replaced by the term − log |cos λ(�r , τ )| = λ2

2 + λ4

12 · · ·.
Next we expand the magnetic Hamiltonian around the antiferromagnetic/groundstate. We

introduce the new fields θ̂s(�r , τ ) and n̂s(�r , τ ),
ns(�r , τ ) = (−1)(rx +ry )n̂s(�r , τ ) (9a)

θs(�r , τ ) = π

4
(−1)(rs+ry ) + θ̂s(�r, τ ) (9b)

where rx + ry is an even/odd integer. Next we integrate the field λ(�r , τ ) and find to order n4
s (�r)

the effective action,

S =
∑

�r

∑
τ

{
ψ̄(�r , τ )∂̂τψ(�r , τ )− i(−1)rx +ry n̂s(�r , τ )∂̂τ θ̂s(�r , τ )

+ 1
2 (1 + ψ+(�r , τ )ψ(�r , τ ))n̂2

s (�r , τ ) + 1
12 (1 + ψ+(�r , τ )ψ(�r , τ ))n̂4

s (�r , τ )
+ ao

[
D

2
n̂2

s (�r , τ )−
J‖
4

∑
i=1,2

n̂s(�r , τ )n̂s(�r + ai , τ )− J⊥
4

∑
i=1,2

cos(2∂̂i θ̂s(�r , τ ))

− t̃
∑
i=1,2

ψ̄(�r + a1, τ ) sin(∂̂i θ̂s(�r , τ ))ψ(�r , τ ) + H.c.

− t̃ ′ ∑
p=+,−

ψ̄(�r + a1 + pa2) cos(∂̂1θ̂s(�r , τ ) + p∂̂2θ̂s(�r , τ ))ψ(�r , τ ) + H.c.

+ hµ(�r , τ ) + δht (�r , τ ) + δht ′(�r , τ )
]}
. (10)

In equation (10) we used the lattice derivative ∂̂i = a∂i (a is the lattice constant). The exchange
parameters J⊥ and J‖ are given by

J⊥ = J (1 − 2δ)n̄2

(
1 − 〈n̂2

s 〉
n̄2

)

J‖ = J (1 − 2δ).

The Ising term in equation (10) takes the form

J‖
4

∑
�r

∑
i=1,2

n̂s(�r , τ )n̂s(�r + ai , τ ) = J‖
4

∑
�k

n̂s(�k, τ )(2 cos(kxa) + 2 cos kya)n̂s(−�k, τ )

≈ J‖
∑

�k
n̂s(�k, τ )n̂s(−�k, τ )− J‖

4

∑
�k

|�k|2n̂s(k, τ )n̂s(−�k, τ ). (11)
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Combining the �k = 0 term from equation (11) with the term induced by fluctuations, we obtain
the renormalized uniaxial term, DR

2 n̂2
s (�r , τ ). D is replaced by DR :[

(1 + 〈ψ+ψ〉)(1 + 1
12 〈n2

s 〉)− 2J‖a0 + Da0
] ≡ 1

2 a0 DR (12)

DR = 0 corresponds to a critical concentration 〈ψ̄ψ〉 = δc,

δc = 〈ψ̄ψ〉 =
[
(2J‖ − D)a0 −

(
1 +

1

12
〈n2

s 〉
)]

1

1 + 1
12 〈n2

s 〉
.

For δ > δc, DR > 0 and 〈ns〉 = 0. We observe that the uniaxial term DR is controlled by the
doping 〈ψ̄ψ〉 and the quantum fluctuations of the n̂4

s (�r , τ ) term.

6. The non-magnetic phase—fermionic holons interacting with the spinons or with the
monopole currents

For the remaining discussion we consider only the situation where the uniaxial term DR is
positive such that n̂s = 0 and the fluctuations of (n̂s) are small such that J⊥ �= 0. When
DR > 0 we can integrate the ‘canonical momentum’ n̂s(�r , τ ) and generate an action in terms
of ∂µθ̂s(�r , τ ) and θ̂s(�r , τ ) only. In the continuous limit we obtain

S =
∫

d2r
∫

dτ

{
ψ̄(�r , τ )∂τψ(�r , τ ) + 1

2γo(∂τ θ̂s(�r , τ ))2 − 1
2γ⊥

∑
i=1,2

a−2 cos(2∂̂i θ̂s(�r , τ ))

− t̃
∑
i=1,2

ψ̄(�r + ai , τ )[sin ∂̂i θ̂s(�r , τ )]ψ(�r , τ ) + H.c.

− t̃ ′ ∑
p=+,−

ψ̄(�r + a1 + pa2, τ )[cos(∂̂1θ̂s(�r , τ ) + p∂̂2θ̂s(�r , τ ))]ψ(�r , τ ) + H.c.

+hµ(�r , τ )
}

≡ S(x−y) + S(ψ). (13)

In equation (11) we have neglected the term δht and δht ′ . This is justified for DR > 0.
In equation (11) we have defined γo ≡ 1

DR
and γ⊥ ≡ J⊥

2 , and we observe that the spinon
fluctuations couple to the holons (charge fluctuations) through the hopping term. The major
difference in equation (13) from the U(1) gauge theory is the fact that the gauge field appears as
a ‘real field’ and not as a complex order parameter. The ‘cosine’ term controls the gauge field
fluctuations. As a result of this equation (13) is only invariant for ‘discrete’ Z2 transformation.

We observe that when we perform a gauge transformation, ψ → ψeiα , ψ̄ → ēiαψ ,
and θ̂ → θ̂ + α. Equation (11) remains invariant only if the phase α(�r , τ ) is given by
α(�r , τ ) = πm(�r, τ ) with m being integers. For m = 1,−1 we have a Z2 gauge model
with the phase fluctuation πm(�r , τ ) representing the vortex excitation of cos[2∂̂i θ̂s]. The
Hamiltonian in equation (13) can be analysed according to the spinon phase fluctuations θ̂s .

(a) We have a spinon (spin-wave phase) with small fluctuations. In this phase the ‘cosine’
terms are replaced by their expectation values. As a result we obtain a spinon–holon
(spin–charge) separated phase.

(b) A vortex monopole current phase: in this phase fluctuations are large and no spin–charge
separation is possible.

The phase transition between the two phases gives rise in equation (13) T = 0
to a superconducting–non-superconducting transition. The vortex loop phase is not
superconducting at T = 0 and describes a regular metal. The vortex free phase at T = 0
describes a superconductor and becomes at finite temperature a non-Fermi liquid.
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From equation (13) we conclude that the spin–charge coupling is induced by the vortex
excitation. Therefore a spin–charge separated phase is possible in the absence of the vortex
excitations.

7. The spin–charge separation caused by the freezing of the monopole currents

In order to investigate the possible phases of equation (13) we consider first the X–Y action
controlled by the spinon order parameter θ̂s(�r , τ ):

S(x−y) =
∫

dr2
∫

dτ

[
1
2γ0 · (∂τ θ̂s(�r , τ ))2 − 1

2γ⊥
∑
i=1,2

a−2 cos(2∂̂i θ̂s(�r , τ ))
]
. (14a)

Equation (14a) represents the X–Y model in 2 + 1 dimensions which is equivalent to a gas of
‘monopole current loops’, µ(�r, τ ), µ = 0, 1, 2, which satisfy ∂µµ = 0. Following Bank
et al [12] we replace the S(x−y) action with the current loop action, S(loop):

S(loop) = π2γeff

2

∫
dr2

∫
d2r ′

∫
dτ

∫
dτ ′ ∑

µ=0,1,2

µ(�r , τ )V (�r − �r ′, τ − τ ′)µ(�r ′, τ ′), (14b)

where γeff ≡ γ⊥
(
γo

γ⊥

)1/2
is the effective coupling and the loop currents obey the continuity

equation ∂µµ = 0. The potential V (�r − �r ′, τ − τ ′) is given in the strong coupling limit by
the unscreened potential, V = 1√

(�r−r ′)2+(τ−τ ′)2
.

Following [12], we find that the model in equation (14b) has a phase transition at
γeff � γ ∗ � 8

6.3 � 1.25. For γeff < γ ∗ the current loops are in the plasma phase, giving
rise to a screened potential V (�r , �r ′, τ −τ ′) ∼ V (0)δ�r,�r ′δτ,τ . This is the phase of free monopole
currents. On the other hand, for γeff < γ ∗ the monopole currents are not free and the potential
is the unscreened Coulomb potential.

In order to compute the properties of the holons (charge holes) we have to calculate the
expectation value of the term sin(∂̂i θ̂ ), and cos[∂̂1θ̂s + p∂̂2θ̂s], p = +,− in equation (13).
The expectation values will be computed using the monopole current loops. We do this by
expressing the large fluctuations of ∂i θ̂s by a vector potential, Ai = (∂i θ̂s)v . This vector
potential describes the vorticity. Expressing the vector potential Ai , i = 1, 2 in terms of the
vortex loops i i = 1, 2 we find

(∂i θ̂s(�r, τ ))v = 1

4π
εi j

∫
d2r ′

∫
dτ ′√

(�r − �r ′)2 + (τ − τ ′)2
J (�r ′, τ ′) sin[α(�r − �r ′, τ − τ ′)].

(14c)

Here α is the polar angle between the current loop and the unit vector, (�r−�r ′,τ−τ ′)√
(�r−�r ′)2+(τ−τ ′)2

. Using

equation (14c) and equation (10) we find that 〈ei(∂i θ̂s)v 〉 is nonzero for the unscreened potential
(γeff > γ ∗), and zero for the screened potential γeff < γ ∗. As a result, for γeff > γ ∗ we
have spin–charge separation and for γeff < γ ∗ the vortex free phase will give rise to the
non-separated spin–charge phase.
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Next we concentrate our discussion on the spin–charge separated phase, γeff > γ ∗. In
this region we replace t ′ by teff . As a result equation (13) is replaced by

S = S(ψ)eff + S(x−y)
spin−wave (15a)

S(ψ)eff =
∫

d2r
∫

d2τ

{
ψ̄(r, τ )(∂τ − µ̂)ψ(r, τ )− teff

∑
p=+,−

ψ̄(�r + a1 + pa2, τ )ψ(�r , τ ) + H.c.

− J

4

∑
i=1,2

ψ̄(�r)ψ(�r )ψ̄(�r + ai)ψ(�r + ai)

}
(15b)

and the spin-wave action is

Sx−y
spin−wave =

∫
d2r

∫
dτ

[
1
2γo(∂τ θ̂s)

2 − 1
2 γ̃⊥

∑
i=1,2

(∂i θ̂s)
2

]
; γ̃⊥ = 4γ⊥, (15c)

where teff is given by

teff = t ′〈cos(∂1θ̂s + p∂2θs)〉spin−wave �= 0. (15d)

The presence of the attractive interaction in equation (15b) gives rise at low temperatures
to superconductivity in the spin–charge separated phase. The effective model in equation (15b)
is controlled by the nearest-neighbour pairing energy J/4 and the effective hopping term teff

(the nearest-neighbour hopping vanishes in the spin-wave phase). Therefore, the normal state
will exist only for T > Tc(J ). Tc(J ) is the superconducting critical temperature for the model
in equation (15b). The physics at zero temperature is determined by the effective coupling
constant. From the analysis of equation (14b), we know that γeff = γ ∗ is the quantum critical
point. Since γeff is a function of δ (see equation (12)) we conclude that the quantum critical
point γ ∗ is controlled by doping, γ ∗ ≡ γeff(δ = δ∗ > δc) describes the zero-temperature
superconducting phase transition. For γeff < γ ∗ the superconducting ground state is destroyed
by the free monopole currents.

8. Conclusion

We conclude by summarizing our main result. Using a bosonic formulation we have
constructed an effective action for the t–t ′–J model in the presence of a positive uniaxial
anisotropy. For hole concentrations δ, δ > δc, the Ising magnetic order is destroyed. As a
result the t–t ′–J model with the uniaxial anysotropy is replaced by a t–t ′–J⊥ model which
has X–Y symmetry. Thus the holes experience a gauge field with a Z2 symmetry (and not a
U(1) symmetry). The spin fluctuations are thus described within the X–Y model which has
two phases—a spin-wave phase for γeff > γ ∗ ≡ γ (δ = δ∗) and vortex monopole loop phase
for γeff < γ ∗. Therefore, for δc < δ � δ∗ we obtain a spin–charge (spino-holon) separated
phase which is superconducting for temperatures T , T < Tc(J ). The point γ ∗ = γ (δ∗)
represents the quantum critical point. For δ > δ∗ we have a vortex liquid, in this phase
the spin–charge separation and superconductivity are both destroyed. As a result we find a
superconducting–non-superconducting phase transition at T = 0.
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